The roots of unity in K, then by (2.8.8), by the above, they all have the same norm in \tilde{G} consists of $\mathbf{z} \in (\mathbb{R}^s \times \mathbb{C}^t)^*$ such that $N(\mathbf{z}) \leq 1$.

$\lambda(\mathbf{z}) = \sum_{k=1}^{s+t} \xi_k l_k$.

Restriction of automorphisms gives rise to $\text{Gal}(L/\mathbb{Q}[k]) \cong \text{Gal}(C/\mathbb{Q}[k])$.

$\mathbb{C} \cong K = k$.
Class Field Theory

Travis Dirle

December 4, 2016
Contents

1 Global Class Field Theory 1
1.1 Ray Class Groups ... 1
1.2 The Idèlic Theory .. 5
1.3 Artin Reciprocity ... 10
1.4 The Existence Theorem and its Consequences 13

2 Local Class Field Theory 19
2.1 Preliminaries on Local Fields 19
2.2 A Fundamental Exact Sequence 20
2.3 Local Units Modulo Norms 21
2.4 Lubin-Tate Extensions 22
2.5 The Local Artin Map 24
Chapter 1

Global Class Field Theory

1.1 Ray Class Groups

Definition 1.1.1. If \(S \) is a set of prime ideals of \(\mathcal{O}_F \), and

\[
\lim_{s \to 1^+} \sum_{p \in S} Np^{-1} \log \left(\frac{1}{s-1} \right) = \delta \text{ exists},
\]

then we say that \(S \) has **Dirichlet density** \(\delta = \delta_F(S) \).

Corollary 1.1.2. Let \(K/F \) be Galois, and let

\[S_{K/F} = \{ p \in \mathcal{O}_F : p \text{ splits completely in } K/F \}. \]

Then \(\delta_F(S_{K/F}) = \frac{1}{[K : F]} \).

Definition 1.1.3. Let \(S, T \) be sets of primes in \(\mathcal{O}_F \), where \(F \) is a number field. We define the following notation.

Write \(S \prec T \) to mean \(\delta_F(S \setminus T) = 0 \).

Write \(S \approx T \) if \(S \prec T \prec S \).

Theorem 1.1.4. Let \(E \) and \(K \) be number fields, each of which is Galois over \(\mathbb{Q} \). Then \(S_K \prec S_E \) if and only if \(E \subset K \).

Theorem 1.1.5. (Approximation Theorem) Let \(| \cdot |_1, \ldots, | \cdot |_n \) be non-trivial pairwise inequivalent absolute values on a number field \(F \), and let \(\beta_1, \ldots, \beta_n \) be non-zero elements of \(F \). For any \(\epsilon > 0 \), there is an element \(\alpha \in F \) such that \(|\alpha - \beta_j|_j < \epsilon \), for each \(j = 1, \ldots, n \).
CHAPTER 1. GLOBAL CLASS FIELD THEORY

Note that when \(p \) is a prime ideal of \(O_F \) and \(c = |\pi|_p \) for \(\pi \in p - p^2 \), the statement \(\alpha \beta \neq 0 \) and \(|\alpha - \beta|_p < \epsilon \) gives \(\text{ord}_p(\alpha / \beta - 1) > n \), where \(n \) is given by \(\epsilon | \beta |_p < c^n \). If \(\alpha \) and \(\beta \) are \(p \)-adic units, then this just means \(\alpha \equiv \beta \mod p^n \).

Note also that when \(|\cdot|_j = |\cdot|_\sigma \), where \(\sigma : F \hookrightarrow \mathbb{R} \), the statement \(\alpha \beta \neq 0 \) and \(|\alpha - \beta|_\sigma < \epsilon \) for small \(\epsilon \) means that \(\sigma(\alpha / \beta) > 0 \).

In the \(p \)-adic situation, we were able to write \(\alpha \equiv \beta \mod p^n \). We can write something similar in the case of real embeddings \(\sigma \) of \(F \) if we make the following convention.

Definition 1.1.6. When \(\sigma : F \hookrightarrow \mathbb{R} \), we associate to \(\sigma \) a formal object that we call an infinite real prime, which we denote by \(p_\sigma \). We may then define

\[\alpha \equiv \beta \mod p_\sigma \text{ if and only if } \sigma(\alpha / \beta) > 0. \]

We may also define infinite imaginary primes: We associate an object \(p_\sigma \) to each conjugate pair \(\sigma, \overline{\sigma} : F \hookrightarrow \mathbb{C} \). We dont use the congruence notation with infinite imaginary primes however.

Definition 1.1.7. Other language used for prime ideals can be adapted to infinite primes as well. If \(K/F \) is an extension of number fields, we say that an infinite prime \(p_\sigma \) ramifies in \(K/F \) if and only if \(\sigma(F) \subset \mathbb{R} \), but for some extension of \(\sigma \) to \(K \) we have \(\sigma(K) \not\subset \mathbb{R} \).

Definition 1.1.8. Using the infinite real primes (and the usual primes), we may also define a divisor or modulus for \(F \) as a formal product \(\prod p^{t(p)} \), where \(t(p) \in \mathbb{N} \) is non-zero for only finitely many \(p \), and can only take a value of 0 or 1 when \(p \) is an infinite real prime. (We may consider the notion of an infinite imaginary prime, but if we do, we must take \(t(p) = 0 \) for all infinite imaginary primes \(p \)) Specifically, we shall denote the product of all the infinite real primes by \(m_\infty = \prod_{\sigma \text{ real}} p_\sigma \).

Definition 1.1.9. If an element \(\alpha \in F \) satisfies \(\sigma(\alpha) > 0 \) for every real embedding \(\sigma \) of \(F \), we say that \(\alpha \) is totally positive, and write \(\alpha \gg 0 \).

Definition 1.1.10. Let \(m \) be a non-zero integral ideal of \(O_F \). Define \(\mathcal{P}^+_F(m) \) to be the subgroup of \(\mathcal{P}_F \), which is

\[\{ \langle \alpha \rangle : \alpha \in O_F, \alpha \equiv 1 \mod m, \text{ and } \alpha \gg 0 \} \text{ or also, } \]

\[\{ \frac{\alpha}{\beta} : \alpha \gg 0; \alpha, \beta \in O_F \text{ prime to } m; \alpha \equiv \beta \mod m \} \]

Definition 1.1.11. Let \(\mathcal{I}_F(m) \) be the group of fractional ideals of \(F \) whose factorizations do not contain a non-trivial power of any prime ideal dividing \(m \):

\[\mathcal{I}_F(m) = \{ a \in \mathcal{I}_F : \text{ord}_p a = 0 \text{ for all } p | m \}. \]
Definition 1.1.12. The strict (narrow) ray class group or generalized ideal class group of F for m, is

$$\mathcal{R}_{F,m}^+ = \mathcal{I}_F(m)/\mathcal{P}_{F,m}^+.$$

We write $\alpha \equiv 1 \mod m$ when $\alpha \equiv 1 \mod \text{ord}_p(m)$ in the completion F_p for every $p | m$. When writing congruences modulo powers of p in the completion, we really mean congruences modulo the unique maximal ideal in the ring of integers of F_p.

Definition 1.1.13. For a non-zero integral ideal m of \mathcal{O}_F we define the ray modulo m as

$$\mathcal{P}_{F,m} = \{\langle \alpha \rangle : \alpha \equiv 1 \mod m\}.$$

Definition 1.1.14. The ray class group of F for m is

$$\mathcal{R}_{F,m} = \mathcal{I}_F(m)/\mathcal{P}_{F,m}.$$

The strict ray class group $\mathcal{R}_{F,m}^+$ may also be viewed as a ray class group in the above sense if one views $\mathcal{P}_{F,m}^+$ as a ray modulo the divisor mm_∞.

When $m = \mathcal{O}_F$, we have

$$\mathcal{R}_{F,m} = \mathcal{I}_F/\mathcal{P}_F = \mathcal{C}_F,$$ the ordinary ideal class group

$$\mathcal{R}_{F,m}^+ = \mathcal{I}_F/\mathcal{P}_F^+,$$ the strict (narrow) ideal class group.

Definition 1.1.15. A generalized Dirichlet character or Weber character of modulus m is a homomorphism of groups $\chi : \mathcal{R}_{F,m}^+ \to \mathbb{C}^\times$.

Proposition 1.1.16. $\mathcal{R}_{F,m}^+$ is a finite group, with

$$\#\mathcal{R}_{F,m}^+ = \frac{h_F 2^{r_1} \phi(m)}{[\mathcal{U}_F : \mathcal{U}_{F,m}^+]}$$

where

$$h_F = \#\mathcal{C}_F$$

$$r_1 = \# \text{ of real embeddings of } F$$

$$\phi(m) = \#(\mathcal{O}_F/m)^\times = \Pi_{p|\text{ord}_p(m)} (Np - 1),$$ where $m = \Pi_{p|m} p^{e_p}$

$\mathcal{U}_F = \mathcal{O}_F^\times$ the units of \mathcal{O}_F

$\mathcal{U}_{F,m}^+ = \{\epsilon \in \mathcal{U}_F : \epsilon \gg 0, \epsilon \equiv 1 \mod m\}$
CHAPTER 1. GLOBAL CLASS FIELD THEORY

Definition 1.1.17. \(R_{F,m}^+ \) is called the strict ray class number modulo \(m \) or the ray class number modulo \(mm_\infty \).

Definition 1.1.18. Let \(K/F \) be Galois, and let \(m \) be an integral ideal of \(\mathcal{O}_F \). We say that \(K \) is the class field over \(F \) of \(\mathcal{P}_{F,m}^+ \) if
\[
S_{K/F} = \{ \text{primes } p \text{ of } \mathcal{O}_F : p \text{ splits completely in } K/F \}
\]
\[
\approx \{ \text{primes } p \text{ of } \mathcal{O}_F : p \in \mathcal{P}_{F,m}^+ \}.
\]

Recall, that \(S \approx T \) if and only if they differ by a set with Dirichlet density zero.

Definition 1.1.19. More generally, we may define the notion of class field for subgroups of \(\mathcal{I}_F(m) \) that contain \(\mathcal{P}_{F,m}^+ \). If \(m \) is a non-zero integral ideal of \(\mathcal{O}_F \), and \(H \) satisfies
\[
\mathcal{P}_{F,m}^+ < H < \mathcal{I}_F(m),
\]
then we say \(K \) is the class field over \(F \) of \(H \) if \(K/F \) is Galois and
\[
S_{K/F} \approx \{ \text{primes } p \text{ of } \mathcal{O}_F : p \in H \}.
\]

Theorem 1.1.20. If the class field \(K \) of \(H \) exists, then it is unique.

Definition 1.1.21. For \(a \in \mathcal{I}_F(m) \) we may define
\[
S_{a,m} = \{ \text{primes } p \text{ of } \mathcal{O}_F : p \equiv a \text{ in } \mathcal{R}_{F,m}^+ \} = \{ \text{primes } p \in a\mathcal{P}_{F,m}^+ \}.
\]

Proposition 1.1.22. Let \(a \in \mathcal{I}_F(m) \). Suppose \(\mathcal{P}_{F,m}^+ < H < \mathcal{I}_F(m) \). If for all characters \(\chi \neq \chi_0 \) of \(\mathcal{I}_F(m) \) that are trivial on \(H \), we have \(L_m(1, \chi) \neq 0 \), then
\[
\delta_F(\{ \text{primes } p \text{ of } \mathcal{O}_F : p \in aH \}) = \frac{1}{[\mathcal{I}_F(m) : H]}.
\]

Theorem 1.1.23. Suppose \(K/F \) is Galois, and \(\mathcal{P}_{F,m}^+ < H < \mathcal{I}_F(m) \). Suppose there is some set of primes \(J \subset H \) with \(S_{K/F} \approx J \). Then
\[
[\mathcal{I}_F(m) : H] \leq [K : F],
\]
and \(L_m(1, \chi) \neq 0 \) whenever \(\chi \neq \chi_0 \) and \(\chi \) is trivial on \(H \).

Corollary 1.1.24. If \(K/F \) is Galois and \(K \) is the class field for \(H \) where \(\mathcal{P}_{F,m}^+ < H < \mathcal{I}_F(m) \), then
\[
[\mathcal{I}_F(m) : H] = [K : F].
\]

Theorem 1.1.25. (Universal Norm Index Inequality) Let \(K/F \) be a Galois extension of number fields and let \(H = \mathcal{P}_{F,m}^+ N_{K/F}(m) \) where
\[
N_{K/F}(m) = \{ a \in \mathcal{I}_F(m) : a = N_{K/F}(\mathfrak{A}) \text{ for some } \mathfrak{A} \text{ in } \mathcal{I}_K \}.
\]
(Note that the factorization of the fractional ideal \(\mathfrak{A} \) of \(K \) cannot contain a non-trivial power of any prime ideal that divides \(m\mathcal{O}_K \), i.e., \(\mathfrak{A} \in \mathcal{I}_K(m\mathcal{O}_K) \).) Then
\[
[\mathcal{I}_F(m) : H] \leq [K : F].
\]
It is possible to rephrase what we have done in terms of divisors. For a divisor \(m = \prod_p p^{a(p)} \) of \(F \), we shall write \(m_0 = \prod_{\text{finite}} p^{a(p)} \) and \(m_{\text{re}} = \prod_{\text{real}} p^{a(p)} \). Of course, if \(p \) is real, then \(a(p) \) is either 0 or 1, and in general, we have \(a(p) = 0 \) for all but finitely many \(p \).

Given a divisor \(m \) of \(F \), we write \(\alpha \equiv 1 \mod m \) to denote \(\alpha \equiv 1 \mod m_0 \) (i.e., \(\text{ord}_p(\alpha - 1) \geq \text{ord}_p(m_0) \) for all \(p \) dividing \(m_0 \)), and that \(\sigma(\alpha) > 0 \) whenever \(\sigma \) is a real embedding with \(p_\sigma \) dividing \(m_{\text{re}} \).

Definition 1.1.26. Remembering that \(m \) is a divisor of \(F \) (and not necessarily an ideal), we let \(\mathcal{P}_{F,m} \) denote the set of principal fractional ideals of \(F \) that have a generator \(\alpha \) with \(\alpha \equiv 1 \mod m \). (\(\mathcal{P}_{F,m} \) is sometimes called the ray modulo the divisor \(m \)). Also, set \(\mathcal{I}_F(m) = \mathcal{I}_F(m_0) \). We call \(\mathcal{R}_{F,m} = \mathcal{I}_F(m)/\mathcal{P}_{F,m} \) the ray class group modulo the divisor \(m \).

1.2 THE İĐËLIC THEORY

Definition 1.2.1. We say that two absolute values are **equivalent** if they induce the same topology.

Definition 1.2.2. A **place** of \(F \) is an equivalence class of non-trivial absolute values on \(F \). Denote the set of places of \(F \) by \(V_F \).

Theorem 1.2.3. Each of the places of \(F \) falls into one of the following three categories:

i) Places that contain one of the \(p \)-adic absolute values given by \(\|\alpha\|_p = N_p^{-\text{ord}_p(\alpha)} \) for a non-zero prime ideal \(p \) of \(\mathcal{O}_F \). These are the finite/non-Archimedean/discrete places of \(F \).

ii) Places that contain one of the absolute values \(\|\alpha\|_\sigma = |\sigma(\alpha)|_\mathbb{R} \), for some real embedding \(\sigma : F \hookrightarrow \mathbb{R} \) of \(F \). These are the infinite/real-Archimedean places of \(F \).

iii) Places that contain one of the absolute values \(\|\alpha\|_\sigma = |\sigma(\alpha)|_\mathbb{C} \), for some \(\sigma : F \hookrightarrow \mathbb{C} \), an imaginary embedding of \(F \). These are the infinite imaginary/imaginary-Archimedean places of \(F \).

Note that two distinct non-zero prime ideals of \(\mathcal{O}_F \) cannot produce absolute values that are equivalent, so there is a distinct finite place for each non-zero
prime ideal of \mathcal{O}_F. Similarly, distinct real embeddings produce inequivalent absolute values. For the imaginary embeddings, each place contains the two (equivalent) absolute values corresponding to a conjugate pair of embeddings. But, if two imaginary embeddings of F are not conjugate, then they give rise to inequivalent absolute values. Thus, there is a single place for each conjugate pair of imaginary embeddings of F.

For a number field F, there are a finite number of infinite places. Also, given $x \in F^\times$, there can be only finitely many prime ideals p of \mathcal{O}_F for which $\|x\|_p \neq 1$. For a non-zero prime ideal p of \mathcal{O}_F, we let v_p denote the place containing $\|\cdot\|_p$. For an embedding $\sigma : F \hookrightarrow \mathbb{C}$, we let v_σ denote the place containing $\|\cdot\|_\sigma$. Conversely, for a finite place $v \in V_F$, we let p_v denote the associated prime ideal of \mathcal{O}_F. To simplify notation, we write ord_v instead of ord_p.

For $v \in V_F$, we may complete F with respect to v. Denote the completion by F_v. Note that if v is a finite place, then $F_v = F_p$ for some p of \mathcal{O}_F. If v is an infinite real place, then $F_v \cong \mathbb{R}$, while if v is an infinite imaginary place, then $F_v \cong \mathbb{C}$.

Definition 1.2.4. An idèle of a number field F is an ‘infinite vector’ $\alpha = (\ldots, a_v, \ldots)_{v \in V_F}$ where each a_v is an element of its corresponding F_v^\times, and where $a_v \in U_v$ for all but finitely many v.

Definition 1.2.5. The idèles of F form a multiplicative group, denoted $J_F = \prod_v F_v^\times$, being a ‘restricted topological product’. We let $\mathcal{E}_F = \prod_{v \in V_F} U_v$, which is a subgroup of J_F. We may give \mathcal{E}_F the product topology, where each U_v has its metric topology.

Definition 1.2.6. A topological group is a group G that is also a topological space, for which multiplication and inversion are continuous.

Proposition 1.2.7. J_F is a locally compact topological group.

Proposition 1.2.8. The quotient group J_F / \mathcal{E}_F is isomorphic to \mathcal{I}_F, the group of fractional ideals of F.

Definition 1.2.9. We may view $\alpha \in F^\times$ as an idèle $(\ldots, \iota_v(\alpha), \ldots)$, where $\iota_v : F \hookrightarrow F_v$ is an embedding of F into its completion at v. This gives an embedding, called the diagonal embedding,

$$\iota : F^\times \hookrightarrow J_F, \text{ where } \iota(\alpha) = (\ldots, \iota_v(\alpha), \ldots).$$

Usually it will do no harm to identify α and $\iota(\alpha)$, and we shall often write F^\times when we really mean $\iota(F^\times)$. If we define a map $\eta : J_F \to \mathcal{I}_F$ by $a = (\ldots, a_v, \ldots) \mapsto \langle a \rangle = \Pi_v \text{ finite } p_v^{\text{ord}_v(a_v)}$, we find that $\eta(\alpha) = \Pi_v \text{ finite } p_v^{\text{ord}_v(\iota_v(\alpha))} = \alpha \mathcal{O}_F$ and $\eta(F^\times) = \mathcal{P}_F$.

Proposition 1.2.10. For a number field F, we have

$$J_F/F^\times \mathcal{E}_F \cong \mathcal{C}_F = I_F/P_F.$$

A given place v of F will lie above either the infinite real place ∞ of \mathbb{Q} or above a finite place of \mathbb{Q} corresponding to a prime p of \mathbb{Z}. Above the place ∞, we choose the ι_v from the set of embeddings $F \hookrightarrow F_v \subset \mathbb{C}$, so that each infinite place of F is represented exactly once. Similarly, for the finite places v above p, we want to choose the ι_v from the embeddings $F \hookrightarrow F_v \subset \mathbb{C}_p$ so that each place of F above p is represented exactly once.

Let $|\cdot|$ denote the usual absolute value on \mathbb{C}. For the infinite places and their embeddings, we have $\|x\|_v = |\iota_v(x)|^d$ (where $d = 1$ if v is real and $d = 2$ if v is imaginary, i.e., $d = [F_v : \mathbb{R}]$). For a finite place $v = v_p$, where p lies above p, the embedding $\iota_v : F \hookrightarrow F_v \subset \mathbb{C}_p$ satisfies $\|x\|_v = |\iota_v(x)|_p^d$, where $d = [F_v : \mathbb{Q}_p]$ and $|\cdot|_p$ is the p-adic absolute value of \mathbb{C}_p, normalized so that $|p|_p = 1/p$.

Proposition 1.2.11. Let m be a non-zero integral ideal of \mathcal{O}_F, and define

$$J_{F,m}^+ = \{a \in J_F : a_v > 0 \text{ for all real } v, \text{ and } a_v \equiv 1 \mod p_v^{\text{ord}_v(m)} \text{ for all } p_v \mid m\};$$

$$\mathcal{E}_{F,m}^+ = J_{F,m}^+ \cap \mathcal{E}_F.$$

Then

$$J_F/F^\times \mathcal{E}_{F,m}^+ \cong \mathcal{R}_{F,m}^+.$$

Corollary 1.2.12. The set of subgroups \mathcal{H} of J_F, with $\mathcal{H} \supset F^\times \mathcal{E}_{F,m}^+$ for some m, corresponds to the set of open subgroups of J_F that contain F^\times.

Definition 1.2.13. Let K/F be an extension of number fields. Define $N_{K/F} : J_K \to J_F$ as follows. Let $(\ldots, a_w, \ldots) = a \in J_K$, where the w are places of K. For a fixed $v \in V_F$, the set $\{w \in V_K : w \mid v\}$ is finite. We construct the norm of a as an idèle of F by computing each v-component in terms of the corresponding set $\{w \in V_K : w \mid v\}$. Specifically, we let $b_v = \Pi_{w|v} N_{K_w/F_v}(a_w)$ and define $N_{K/F}(a) = (\ldots, b_v, \ldots) \in J_F$.

Recall that if $\alpha \in K$, then for any fixed $v \in V_F$

$$N_{K/F}(\alpha) = \Pi_{w|v} N_{K_w/F_v}(\iota_w(\alpha)).$$

Hence if $\alpha \in K^\times$ is viewed as an idèle in J_K, then $N_{K/F}(\alpha)$ is the idèle in J_F arising from the usual norm of the element α.

Proposition 1.2.14. Let K/F be abelian Galois, and let

$$\mathcal{H} = F^\times N_{K/F} J_K$$

(so $F^\times \subset \mathcal{H} \subset J_F$). Then \mathcal{H} is an open subgroup in J_F. Moreover, if m is chosen so that

$$\mathcal{E}_{F,m}^+ \subset \mathcal{H}.$$
then the image of \mathcal{H} under the isomorphism

$$J_F/F^\times \cong T_\mathcal{F}(m)/P_\mathcal{F}^m$$

is precisely $P_\mathcal{F}^m N_{K/F}(m)/P_\mathcal{F}^m$. We have $[J_F : \mathcal{H}] = [T_\mathcal{F}(m) : P_\mathcal{F}^m N_{K/F}(m)] \leq [K : F]$.

Definition 1.2.15. Let K/F be a (not necessarily abelian) Galois extension of number fields. We define an action of $\text{Gal}(K/F)$ on J_K. Let $G = \text{Gal}(K/F)$ and let $p = (\ldots, a_w, \ldots) \in J_K$. Let $\sigma \in G$. For a place w of K, define the place σw by

$$\|\alpha\|_{\sigma w} = \|\sigma^{-1}(\alpha)\|_w \text{ or also } \|\sigma(\alpha)\|_{\sigma w} = \|\alpha\|_w.$$

It is clear that G transitively permutes the places of K. σ induces an isomorphism between the completion that we also denote by $\sigma : K_w \to K_{\sigma w}$. We may now define for each $v \in V_F$

$$\sigma(\ldots, a_w, \ldots)_{\sigma w} = (\ldots, b_w, \ldots)_{\sigma w},$$

where $b_{\sigma w} = \sigma(a_w)$, i.e., $b_w = \sigma(a_{\sigma^{-1}w})$ This gives an action of σ on J_K.

Since $\Pi_{v|w} N_{K_w/F_v}(a_w)$ is the v^{th} coordinate of $N_{K/F}(a)$, if we embed $J_F \to J_K$ as before, we have

$$\Pi_{\sigma \in G} \sigma(a) = N_{K/F}(a).$$

Lemma 1.2.16. Let $C_K = J_K/K^\times$ be the group of idèle classes of K, and similarly let $C_F = J_F/F^\times$. The embedding $J_F \hookrightarrow J_K$ induces an embedding $C_F \hookrightarrow C_K$. Furthermore, $C_K^G = C_F$.

Lemma 1.2.17. Let k_2/k_1 be an extension of local fields, (for some $p, k_j/Q_p$ is a finite extension), with $\text{Gal}(k_2/k_1) = G$, a cyclic group. Let \mathcal{U}_j denote the units of k_j, i.e., the elements of absolute value 1. Then $\mathcal{Q}_G(\mathcal{U}_2) = 1$, and

$$[\mathcal{U}_2^G : s(G)\mathcal{U}_2] = [\mathcal{U}_1 : N_{k_2/k_1}\mathcal{U}_2] = e(k_2/k_1)$$

(whence also $[\text{ker } s(G) : (\sigma - 1)\mathcal{U}_2] = e(k_2/k_1)$).

Lemma 1.2.18. Let k_2/k_1 be an extension of local fields and suppose we have subgroups $B < A < \mathcal{U}_2$, with $[A : B] = d$. Then $N_{k_2/k_1}B \subset N_{k_2/k_1}A$ are subgroups of \mathcal{U}_1 and $[N_{k_2/k_1}A : N_{k_2/k_1}B]$ divides d.

Corollary 1.2.19. If k_2/k_1 is an abelian extension of local fields, then

$$[\mathcal{U}_1 : N_{k_2/k_1}\mathcal{U}_2] \leq e(k_2/k_1).$$
CHAPTER 1. GLOBAL CLASS FIELD THEORY

Proposition 1.2.20. For an abelian extension \(K/F \) of number fields with group \(G \), let \(\mathcal{H} = F^\times N_{K/F} J_K \). Then

i) \(\mathcal{H} \) is open in \(J_F \), so \(\mathcal{H} \supset \mathcal{E}_{F,m}^+ \) for some \(m \).

ii) the image of \(\mathcal{H} \) under the isomorphism

\[J_F/F^\times \mathcal{E}_{F,m}^+ \cong \mathcal{I}_F(m)/\mathcal{P}_{F,m}^+ \]

is precisely

\[\mathcal{P}_{F,m}^+ N_{K/F}(m)/\mathcal{P}_{F,m}^+. \]

Proposition 1.2.21. Let \(K/F \) be a Galois extension of number fields, with cyclic Galois group \(G = \langle \sigma \rangle \). Let \(v \) be a place of \(F \) and let \(w \) be a place of \(K \) above \(v \).

i) \(Q_G(U_w) = 1 \) if \(w \) is finite, if \(w \) is real, or if \(v \) is imaginary.

ii) \(Q_G(U_w) = 2 \) if \(w \) is imaginary but \(v \) is real.

iii) \(Q_G(\Pi_{v\in S} \Pi_{w|v} U_w) = 1 \), where \(S = \{ v \in V_F : v \) is infinite, or \(v \) ramifies in \(K/F \}. \)

Lemma 1.2.22. Let \(S \) be a finite set and let \(V = \bigoplus_{w \in S} \mathbb{R} X_w \) be a real vector space. For an element \(\sum_{w \in S} a_w X_w \) of \(V \), define

\[\| \sum_{w \in S} a_w X_w \|_0 = \max_{w \in S} \{|a_w| : w \in S\}, \]

(the sup-norm on \(V \)). If \(\{ X'_w : w \in S \} \) is given so that \(\| X'_w - X_w \|_0 < \frac{1}{\dim_{\mathbb{R}} V} \) for each \(w \), then \(\{ X'_w : w \in S \} \) is also a basis for \(V \).

Lemma 1.2.23. Let \(G \) be a finite group acting on a finite set \(S \). Let \(V = \bigoplus_{w \in S} \mathbb{R} X_w \) be a vector space. Then \(G \) acts on \(V \) via

\[\sigma \left(\sum_{w \in S} a_w X_w \right) = \sum_{w \in S} a_w X_{\sigma w}. \]

Note that the action of \(G \) preserves sup-norms: \(\| \sigma(X) \|_0 = \| X \|_0 \) for all \(X \in V \). Let \(L \subset V \) be a lattice preserved by \(G \). Then there is a basis \(\{ Y_w \}_{w \in S} \) of \(V \) contained in \(L \) such that \(\sigma(Y_w) = Y_{\sigma w} \) for all \(\sigma \in G \) and for all \(w \in S \).

Proposition 1.2.24. Let \(K/F \) be a Galois extension of number fields, with cyclic Galois group \(G = \langle \sigma \rangle \). Then

\[Q_G(U_K) = \frac{2^a}{[K : F]} \]

where \(a = \# \{ v \in V_F : v \) is real on \(F \), but extends to imaginary places on \(K \}. \)

Corollary 1.2.25. \(Q_G(\mathcal{C}_K) = [K : F] \).
\textbf{Theorem 1.2.26. (Global Cyclic Norm Index Inequality)} If \(K/F \) is a cyclic extension of number fields and \(m \) is an integral ideal of \(\mathcal{O}_F \) that is divisible by a sufficiently high power of every ramified prime in \(K/F \), then

\[[\mathcal{I}_F(m) : \mathcal{P}_{F,m}^+ \mathcal{N}_{K/F}(m)] = [K : F]. \]

\section*{1.3 Artin Reciprocity}

Recall that for an ideal \(m \) of \(\mathcal{O}_F \), we set

\begin{align*}
J_{F,m}^+ &= \{ a \in J_F : a_v > 0 \text{ all real } v, a_v \equiv 1 \mod p_v^{ord_v(m)} \text{ all finite } v\}, \\
\mathcal{E}_{F,m}^+ &= J_{F,m}^+ \cap \mathcal{E}_F \\
F_{m}^+ &= J_{F,m}^+ \cap F^\times \\
\mathcal{I}_F(m) &= \{ a \in \mathcal{I}_F : ord_p a = 0 \text{ for all } p | m \} \\
\mathcal{P}_{F,m}^+ &= \{ \langle \alpha \rangle \in \mathcal{P}_F : \alpha \gg 0, \alpha \equiv 1 \mod m \} \\
\mathcal{N}_{K/F}(m) &= \{ a \in \mathcal{I}_F(m) : a = \mathcal{N}_{K/F}(A) \text{ for some } A \in \mathcal{I}_K \}
\end{align*}

and showed

\[J_F/F^\times \mathcal{E}_{F,m}^+ \cong J_{F,m}^+ / \mathcal{E}_{F,m}^+ F_m^+ \cong \mathcal{I}_F(m) / \mathcal{P}_{F,m}^+ \]

via the homomorphism \(\eta_m : J_{F,m}^+ \rightarrow \mathcal{I}_F(m) \) given by

\[a = (\ldots, a_v, \ldots) \mapsto \langle a \rangle = \prod_{v \text{ finite}} p_v^{ord_v(a_v)} \]

\textbf{Definition 1.3.1.} There is a minimal ideal \(\mathfrak{f} \) of \(\mathcal{O}_F \) such that \(\mathcal{E}_{F,\mathfrak{f}}^+ \subset \mathcal{H} \). This ideal \(\mathfrak{f} \) is called the conductor of \(\mathcal{H} \) (or of \(K/F \)), denoted \(\mathfrak{f} = \mathfrak{f}(K/F) \). By minimality here, we mean that if \(\mathcal{E}_{F,m}^+ \subset \mathcal{H} \) then \(\mathfrak{f} | m \).

By the minimality of \(\mathfrak{f} \) we have that if \(p_v \) is unramified then \(p_v \nmid \mathfrak{f} \). The conductor cannot be divisible by any unramified prime.

\textbf{Definition 1.3.2.} Let \(K/F \) be a Galois extension of number fields with abelian Galois group \(G \), and \(p \) a prime ideal of \(\mathcal{O}_F \) that is unramified in \(K/F \). Then the decomposition group \(G_p = \mathcal{Z}(p) \) must be cyclic (inertia is trivial) with a canonical generator \(\sigma_p = \left(\frac{p}{K/F} \right) \), the Artin automorphism.
Let \(m \) be an ideal of \(\mathcal{O}_F \) that is divisible by all the primes that ramify in the extension \(K/F \) and no others. The map \(p \mapsto \sigma_p \) induces a homomorphism \(\mathcal{A} = \mathcal{A}_{K/F}: \mathcal{I}_F(m) \to G \) given by \(a \mapsto \sigma_a = \left(\frac{a}{K/F} \right) \) where, for \(a = \prod_p p^{n_p} \in \mathcal{I}_F(m) \), we set

\[
\sigma_a = \prod_p \sigma_p^{n_p} = \left(\frac{a}{K/F} \right).
\]

(\(\sigma_a \) does not depend on the choice of \(m \)). The map \(\mathcal{A} \) is called the Artin map and \(\left(\frac{a}{K/F} \right) \) is the Artin symbol. Note that since \(m \) is divisible by all the ramifying primes, \(\sigma_p \) is defined for all \(p \nmid m \).

Proposition 1.3.3. Let \(F \subset L \subset K, F \subset E \subset K \) be number fields and suppose \(K/F \) is abelian. Let \(\mathfrak{p} \) be a prime ideal of \(\mathcal{O}_F \) that is unramified in \(K/F \) and let \(\mathfrak{P}_K \) be a prime ideal of \(\mathcal{O}_K \) that divides \(\mathfrak{p} \). Let \(\mathfrak{P}_L = \mathfrak{P}_K \cap L, \mathfrak{P}_E = \mathfrak{P}_K \cap E \) (prime ideals of \(\mathcal{O}_E, \mathcal{O}_L \), respectively, that divide \(\mathfrak{p} \)). Then

\[
\left(\frac{\mathfrak{P}_E}{K/E} \right) \big|_L = \left(\frac{\mathfrak{p}}{L/F} \right)^f
\]

where \(f = f(\mathfrak{P}_E/\mathfrak{p}) \) is the residue field degree.

Corollary 1.3.4. Let \(F \subset L \subset K \) be number fields, where \(K/F \) is abelian Galois. Let \(\mathfrak{p} \) be a prime ideal of \(\mathcal{O}_F \) that is unramified in \(K/F \). Then

\[
\left(\frac{\mathfrak{p}}{K/F} \right) \big|_L = \left(\frac{\mathfrak{p}}{L/F} \right).
\]

Corollary 1.3.5. Let \(F \subset E \subset K \) be number fields, where \(K/F \) is abelian Galois. Let \(\mathfrak{p} \) be a prime ideal of \(\mathcal{O}_F \) that is unramified in \(K/F \) and let \(\mathfrak{P}_E \) be a prime of \(\mathcal{O}_E \) above \(\mathfrak{p} \). Then

\[
\left(\frac{\mathfrak{P}_E}{K/E} \right) = \left(\frac{N_{E/F} \mathfrak{P}_E}{K/F} \right).
\]

Corollary 1.3.6. Let \(K/F \) be an abelian Galois extension of number fields. Let \(m \) be an ideal of \(\mathcal{O}_F \) that is divisible by all the primes that ramify in \(K/F \). Then

\[
N_{K/F}(m) \subset \ker(\mathcal{A}: \mathcal{I}_F(m) \to G).
\]

Theorem 1.3.7. (Artin Reciprocity) Let \(K/F \) be an abelian extension of number fields, and assume \(m \) is an ideal of \(\mathcal{O}_F \), divisible by all the ramifying primes. Let \(G = \text{Gal}(K/F) \). Then

i) \(\mathcal{A}: \mathcal{I}_F(m) \to G \) is surjective,

ii) the ideal \(m \) of \(\mathcal{O}_F \) can be chosen so that it is divisible only by the ramified primes and satisfies \(\mathcal{P}_{F,m}^+ \subset \ker(\mathcal{A}); \) thus we have an epimorphism \(\mathcal{I}_F(m)/\mathcal{P}_{F,m}^+ \to G \).

iii) \(N_{K/F}(m) \subset \ker(\mathcal{A}) \).
Choosing \(m \) as in ii, we have a well defined homomorphism

\[\mathcal{I}_F(m)/\mathcal{P}_{F,m}^+N_{K/F}(m) \to G \]

Since the cardinality of the LHS is \(\leq [K : F] = \#G \) by the Universal Norm Index Inequality, we have

\[\mathcal{I}_F(m)/\mathcal{P}_{F,m}^+N_{K/F}(m) \cong G. \]

Note that this isomorphism is given by the Artin map.

Proposition 1.3.8. If \(K/F \) is a cyclic extension of number fields with Galois group \(G \), and \(m \) is an ideal of \(\mathcal{O}_F \) sufficiently large so that it is divisible by all the ramifying primes in \(K/F \) and so that \(\mathcal{E}_{F,m}^+ \subset F^\times N_{K/F}J_K \), then the kernel of the Artin map satisfies \(\ker(A) \subset \mathcal{P}_{F,m}^+N_{K/F}(m) \).

Lemma 1.3.9. Let \(r > 1, a > 1 \) be integers, and let \(q \) be a prime number. There is a prime number \(p \) such that the order of \(a \mod p \) in \((\mathbb{Z}/p\mathbb{Z})^\times \) is \(q^r \).

Corollary 1.3.10. Let \(a > 1 \) be an integer. Given \(q^r \) as before, there are infinitely many primes \(p \) such that \(q^r \) divides the order of \(a \mod p \) in \((\mathbb{Z}/p\mathbb{Z})^\times \).

Lemma 1.3.11. Let \(S \) be a finite set of primes, and let \(a > 1, n > 1 \) be integers. There is an integer \(d \), prime to all the elements of \(S \), such that \(n \) divides the order of \(a \mod d \) in \((\mathbb{Z}/d\mathbb{Z})^\times \).

Lemma 1.3.12. Given integers \(n > 1, a > 1 \), and a finite set \(S \) of primes, there is a positive integer \(m \) such that

i) \(m \) is prime to all the elements of \(S \)

ii) \(n \) divides the order of \(a \mod m \) in \((\mathbb{Z}/m\mathbb{Z})^\times \)

iii) there exists \(b \in \mathbb{Z} \) such that \(n \) divides the order of \(b \mod m \) in \((\mathbb{Z}/m\mathbb{Z})^\times \) but \(a \) and \(b \) are independent \(\mod m \) (i.e., \(\langle a \mod m \rangle \cap \langle b \mod m \rangle = 1 \)).

Lemma 1.3.13. Let \(F \) be a number field, \(S \) a finite set of primes in \(\mathbb{Z} \), \(\mathfrak{p} \) a prime of \(\mathcal{O}_F \). Then for any integer \(n > 1 \), there exists \(m \in \mathbb{Z} \), prime to \(S \) and to \(\mathfrak{p} \), such that if \(\zeta_m \) is a primitive \(m^{th} \) root of unity, then

i) \(\text{Gal}(F(\zeta_m)/F) \cong (\mathbb{Z}/m\mathbb{Z})^\times \).

ii) \(\left(\frac{p}{F(\zeta_m)/F} \right) \) has order divisible by \(n \) in \(\text{Gal}(F(\zeta_m)/F) \).

iii) there is some \(\tau \in \text{Gal}(F(\zeta_m)/F) \) of order divisible by \(n \), such that \(\tau \) is independent to \(\left(\frac{p}{F(\zeta_m)/F} \right) \). Note: independence implies \(\langle \tau \rangle \cap Z(\mathfrak{p}) = 1 \), since \(\left(\frac{p}{F(\zeta_m)/F} \right) \) generates the decomposition group \(Z(\mathfrak{p}) \).

Lemma 1.3.14. (Artin’s Lemma) Let \(K/F \) be a cyclic extension of number fields of degree \(n \), \(S \) a finite set of primes of \(\mathbb{Z} \), \(\mathfrak{p} \) a prime of \(\mathcal{O}_F \). Then there is some \(m \in \mathbb{Z}_+ \), prime to the elements of \(S \) and to \(\mathfrak{p} \), and an extension \(E/F \) such that

i) \(K \cap E = F \)
ii) \(K(\zeta_m) = E(\zeta_m) \), i.e., \(KE \subset K(\zeta_m) = E(\zeta_m) \)

iii) \(K \cap F(\zeta_m) = F \)

iv) \(\mathfrak{p} \) splits completely in \(E/F \).

Suppose \(m \) satisfies Artin reciprocity and let

\[
S_{K/F} = \{ \text{prime ideals } \mathfrak{p} \text{ of } O_F : \mathfrak{p} \text{ splits completely in } K/F \}
\]

\[
J_{K/F} = \{ \text{prime ideals } \mathfrak{p} \text{ of } O_F : \mathfrak{p} \in \mathcal{P}_{F,m}^{+}N_{K/F}(m) \}.
\]

Corollary 1.3.15. Let \(K/F \) be an abelian extension of number fields, say with \([K : F] = n\), and let \(\mathfrak{p} \) be a prime of \(O_F \), unramified in \(K/F \). Suppose \(m \) is divisible by all the ramified primes and no others, and suppose \(m \) satisfies Artin Reciprocity. Let \(f \) be the smallest positive integer such that \(\mathfrak{p}^f \in \mathcal{P}_{F,m}^{+}N_{K/F}(m) \). Then, in \(O_L \), we have a factorization \(\mathfrak{p}O_L = \mathfrak{P}_1 \cdots \mathfrak{P}_g \), where each \(\mathfrak{P}_i \) is a prime of \(O_L \) with residue degree \(f \) over \(\mathfrak{p} \), and where \(g = n/f \). In particular, \(S_{K/F} = J_{K/F} \).

The statement of Artin Reciprocity reformulated in terms of idèles goes as follows. If \(m \) is chosen so that \(\mathcal{E}_{F,m}^{+} \subset F^{\times}N_{K/F}J_K \) then we have

\[
J_F \to J_F/F^{\times}N_{K/F}J_K \to \mathcal{I}_F(m)/\mathcal{P}_{F,m}^{+}N_{K/F}(m) \to \text{Gal}(K/F)
\]

Definition 1.3.16. Let \(\rho_{K/F} : J_F \to \text{Gal}(K/F) \) be the composition. It is a surjective homomorphism of groups with kernel \(F^{\times}N_{K/F}J_K \). We say \(K \) is the class field over \(F \) of \(F^{\times}N_{K/F}J_K \) and we call \(\rho_{K/F} \) the idelic Artin map. For \(a \in J_F \), we sometimes denote

\[
\rho_{K/F}(a) = \left(\frac{a}{K/F} \right).
\]

1.4 The Existence Theorem and its Consequences
Theorem 1.4.1. (The Existence Theorem) Every open subgroup $\mathcal{H} \subset J_F$ with $\mathcal{H} \supset F^\times$ is of the form $\mathcal{H} = F^\times N_{K/F} J_K$ for some (unique) finite abelian extension K/F.

Theorem 1.4.2. (The Existence Theorem) For any \mathcal{H}, with $\mathcal{P}_{F,m}^{+} < \mathcal{H} < \mathcal{I}_F(m)$, there is a class field K/F associated to \mathcal{H}.

Theorem 1.4.3. (The Completeness Theorem) For any abelian extension K/F, there is some m and some \mathcal{H} with $\mathcal{P}_{F,m}^{+} < \mathcal{H} < \mathcal{I}_F(m)$ such that K is the class field over F of \mathcal{H}.

Theorem 1.4.4. (The Isomorphy Theorem) When $\mathcal{P}_{F,m}^{+} < \mathcal{H} < \mathcal{I}_F(m)$, and K is the class field over F of \mathcal{H}, we have $\text{Gal}(K/F) \cong \mathcal{I}_F(m)/\mathcal{H}$ with the isomorphism being induced by the Artin map.

Proposition 1.4.5. Let

$$\Phi : \{\text{finite abelian extensions } K \text{ of } F\} \rightarrow \{\text{open subgroups } \mathcal{H} \text{ of } J_F \text{ that contain } F^\times\}$$

be given by $\Phi(K) = F^\times N_{K/F} J_K$. Then:

i) $K \subset K'$ if and only if $\Phi(K') \subset \Phi(K)$, the Ordering Theorem,

ii) $\Phi(KK') = \Phi(K) \cap \Phi(K')$,

iii) $\Phi(K \cap K') = \Phi(K) \Phi(K')$,

iv) If $\mathcal{H} = \Phi(E) = F^\times N_{E/F} J_E$ and $K \supset E$, then E is the fixed field of $\rho_K/F(\mathcal{H})$.

Corollary 1.4.6. Suppose K is the class field to the open subgroup \mathcal{H} of J_F, where \mathcal{H} contains F^\times, and let $\mathcal{H}' \supset \mathcal{H}$ be an open subgroup of J_F. Then \mathcal{H}' has a class field over F.

Proposition 1.4.7. (Reduction Lemma) Let K/F be a cyclic extension of number fields and suppose \mathcal{H} is an open subgroup of J_F that contains F^\times. Let $\mathcal{H}_K = \{x \in J_K : N_{K/F}(x) \in \mathcal{H}\} = N_{K/F}^{-1}(\mathcal{H})$. If \mathcal{H}_K has a class field over K, then \mathcal{H} has a class field over F.

Definition 1.4.8. An abelian extension K/F is said to have exponent n if the abelian group $\text{Gal}(K/F)$ has exponent n.

Definition 1.4.9. A finite abelian extension K/F is called a Kummer n-extension if $\text{Gal}(K/F)$ is a group with exponent n and F contains all the n^{th} roots of unity.

Theorem 1.4.10. Let F be a number field containing all the n^{th} roots of unity. There is a bijective correspondence between the finite Kummer n-extensions K of F and the subgroups W of F^\times with $(F^\times)^n \subset W$ and $W/(F^\times)^n$ finite. The correspondence associates W to the field $K = F(W^{1/n})$, for which we have $\text{Gal}(K/F) \cong W/(F^\times)^n$.

14
Let F be a number field. Let S be a finite set of places of F and assume $S \supseteq S_{\infty} = \{\text{infinite places of } F\}$. Define

$$J_{F,S} = \prod_{v \in S} F_v^\times \times \prod_{v \notin S} \mathcal{U}_v$$

an open subgroup of J_F.

$$F_S = J_{F,S} \cap F^\times$$

the S-units of F, a discrete subgroup of $J_{F,S}$.

Note that F_S also may be defined without using idèles:

$$F_S = \{\alpha \in F^\times : \text{the factorization of } \langle \alpha \rangle \text{ involves no prime } p_v \text{ with } v \notin S\}.$$

Lemma 1.4.11. There is a finite set of places $S \supseteq S_{\infty}$ such that $J_F = F^\times J_{F,S}$.

Theorem 1.4.12. Let S be a finite set of places of F, with $S_{\infty} \subset S$. Then F_S is the direct product of the (finite cyclic) group of roots of unity in F, and a free abelian group of rank $\#S - 1$. That is

$$F_S \cong \mathcal{W}_F \times \mathbb{Z}^{#S-1}.$$

Corollary 1.4.13. If F contains the nth roots of unity and $S \supseteq S_{\infty}$ is a finite set of places of F, then

$$[F_S : F^u_S] = n^{#S}.$$

Lemma 1.4.14. Let v be a finite place of F, and let $n \in \mathbb{Z}_+$. If μ_n denotes the set of all nth roots of unity, then

i) $[\mathcal{U}_v : \mathcal{U}_v^n] = \frac{1}{\|n\|_v} (F_v \cap \mu_n)$.

ii) $[F_v^\times : (F_v^\times)^n] = \frac{n}{\|n\|_v} (F_v \cap \mu_n)$.

Theorem 1.4.15. Let F be a number field that contains all the nth roots of unity. Let S be a finite set of places of F containing S_{∞}, the places v such that $p_v | n$ and sufficiently many finite places so that $J_F = F^\times J_{F,S}$. Let

$$B = \prod_{v \in S} (F_v^\times)^n \times \prod_{v \notin S} \mathcal{U}_v.$$

Then $F^\times B$ has class field $F(F_S^{1/n})$ over F.

Theorem 1.4.16. (The Existence Theorem) Let F be a number field. Let \mathcal{H} be an open subgroup of J_F with $F^\times \subset \mathcal{H}$. Then \mathcal{H} has a class field over F, i.e., there is a finite abelian extension K of F such that $\mathcal{H} = F^\times N_K/F J_K$.

Theorem 1.4.17. Let \mathcal{H} be an open subgroup of J_F that contains F^\times and let K be the class field of \mathcal{H} over F. Let v be a place of F. If p_v splits completely in K/F, then $\phi_v(F_v^\times) \subset \mathcal{H}$, where ϕ is the embedding $\phi_v : F_v^\times \hookrightarrow J_F$.

Theorem 1.4.18. Let \mathcal{H} be an open subgroup of J_F that contains F^\times and let K be the class field over F of \mathcal{H}. Suppose J_F/\mathcal{H} has exponent n and that F contains the nth roots of unity. Let v_0 be a place of F with $\phi_{v_0}(F_v^\times) \subset \mathcal{H}$. Then p_{v_0} splits completely in K/F.

15
Theorem 1.4.19. Let K/F be an abelian extension of number fields, and let v be a finite place of F. The Artin map $\rho_{K/F}$ satisfies $\rho_{K/F}(\phi_v(F_v^\times)) = \mathbb{Z}(p_v)$, the decomposition group.

Theorem 1.4.20. (Complete Splitting Theorem) Let \mathcal{H} be an open subgroup J_F with $F^\times \subset \mathcal{H}$, and let K be the class field of \mathcal{H} over F. Let v be a finite place of F. Then p_v splits completely in K/F if and only if $\phi_v(F_v^\times) \subset \mathcal{H}$.

Corollary 1.4.21. Let \mathcal{H} be an open subgroup of J_K with $F^\times \subset \mathcal{H}$ and let K be the class field of \mathcal{H} over F. Then

$$\phi_v(F_v^\times) \cap \mathcal{H} = \phi_v(N_{K_w/F_w}K_w^\times)$$
$$\phi_v(U_v) \cap \mathcal{H} = \phi_v(N_{K_w/F_w}U_w).$$

Theorem 1.4.22. Let K/F be an abelian extension of number fields, and let $\mathcal{H} = F^\times N_{K/F}J_K$. Let v be a finite place of F. Then $\rho_{K/F}(\phi_v(U_v)) = T(p_v)$, the inertia subgroup in $\text{Gal}(K/F)$.

Corollary 1.4.23. If \mathcal{H} is an open subgroup of J_F with $F^\times \subset \mathcal{H}$, and K is the class field to \mathcal{H} over F, then for any finite place v of F, the class field to $\mathcal{H}\phi_v(U_v)$ is the maximal subfield of K in which p_v is unramified, hence it is the field K_T, (the fixed field of $T(p_v)$).

Corollary 1.4.24. Let K/F be an abelian extension of number fields, v a finite place of F, and w a place of K above v. Then

$$U_v/N_{K_w/F_w}U_w \cong T(p_v).$$

Theorem 1.4.25. If K/F is an abelian extension of number fields, then $\mathfrak{f}(K/F)$ is divisible by all the ramified primes, and no others.

Theorem 1.4.26. (Kronecker, Weber) Every finite abelian extension F of \mathbb{Q} satisfies $F \subset \mathbb{Q}(\zeta)$ for some root of unity ζ.

Proposition 1.4.27. Let F be a number field and let \mathcal{H} be an open subgroup of J_F that contains F^\times. Then $\mathcal{H} \supset F^\times \mathcal{E}_F$ if and only if the class field to \mathcal{H} over F is an abelian extension of F that is everywhere unramified.

Definition 1.4.28. Taking $\mathcal{H} = F^\times \mathcal{E}_F$ and applying previous proposition, we find that the extension F_1/F (where F_1 is the class field of \mathcal{H}) is abelian and everywhere unramified; it is necessarily the maximal unramified abelian extension of F. F_1 is called the Hilbert class field of F.

Theorem 1.4.29. (Principal Ideal Theorem) Every fractional ideal α of a number field F becomes principal in F_1, i.e., $\alpha \mathcal{O}_{F_1}$ is principal.

Theorem 1.4.30. Let K/F be an extension of number fields and suppose $K \cap F_1 = F$. Then

i) $h_F | h_K$.
ii) the map $N_{K/F} : C_K \to C_F$ is surjective.
Proposition 1.4.31. If K/F is an extension of number fields, and there is some prime p of O_F that is totally ramified in K/F, then $h_F \mid h_K$.

Theorem 1.4.32. Let E/F be an extension of number fields and let $\mathcal{H} = F^\times N_{E/F} J_E$, an open subgroup of J_F that contains F^\times. Let K be the class field of \mathcal{H} over F. Then K/F is the maximal abelian subextension of E/F.

Let E/F be an arbitrary (not necessarily Galois) extension of number fields and put

$$S_{E/F}^1 = \{ \text{unramified primes } p \text{ of } O_F : f(\mathfrak{P}/p) = 1 \text{ for some prime } \mathfrak{P} | pO_E \}.$$

Theorem 1.4.33. Suppose K/F is a Galois extension of number fields and L/F is any finite extension. Then $S_{L/F}^1 \prec S_{K/F}$ if and only if $K \subset L$.

Corollary 1.4.34. A Galois extension of number fields K/F is uniquely determined by the set $S_{K/F}$ of primes that split completely.

Definition 1.4.35. Let M/F be a (possibly infinite) Galois extension with Galois group G. For each $\sigma \in G$, we take the cosets

$$\{ \sigma \text{Gal}(M/K) : K/F \text{ is a finite subextension of } M/F \}$$

as a basis of open neighborhoods of σ. The resulting topology is called the Krull topology on G.

Theorem 1.4.36. (Main Theorem of Galois Theory - General Case) Let M/F be a Galois extension with Galois group G. The map $L \mapsto \text{Gal}(M/L)$ is a bijective correspondence between the subextension L/F of M/F and the closed subgroups of $\text{Gal}(M/F)$. Moreover, in this correspondence the open subgroups of $\text{Gal}(M/F)$ are paired with the finite subextensions of M/F.

Theorem 1.4.37. Let $p > 2$ be a prime, let $E = \mathbb{Q}(\zeta_p)$ have class number h, and let $E^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ have class number h^+. Let $h^- = h/h^+$. Then

$$h^- = 2p \Pi_{\chi \text{ odd}, f_\chi = p} \frac{1}{2} L(0, \chi)$$

$$h^+ = [\mathcal{U}_E : \mathcal{Y}_E]$$

where \mathcal{Y}_E is the group of cyclotomic units of E, i.e.,

$$\mathcal{Y}_E = \left\{ \frac{1 - \zeta_p^a}{1 - \zeta_p^b} : a, b \not\equiv 0 \mod p \right\}.$$

Theorem 1.4.38. Let $p > 2$ be a prime, let $E = \mathbb{Q}(\zeta_p)$, and let $E^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ as before. The map $\mathcal{C}_{E^+} \to \mathcal{C}_E$ given by $[a]_{E^+} \mapsto [aO_E]_E$ is injective.
CHAPTER 1. GLOBAL CLASS FIELD THEORY

Theorem 1.4.39. Let $E = \mathbb{Q}(\zeta_p)$ and let B_n denote the n^{th} Bernoulli number, i.e.,
$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$
Then $p \mid h_E$ if and only if p divides the numerator of some B_{2k}, where $1 \leq k < \frac{p-1}{2}$.

Theorem 1.4.40. If $p > 2$ is prime and $p \nmid h_E$, where $E = \mathbb{Q}(\zeta_p)$, then
$$
x^p + y^p = z^p, \quad (xyz, p) = 1
$$
has no non-trivial solution in integers.

Lemma 1.4.41. If K/E is everywhere unramified and Galois with $\text{Gal}(K/E) = G$, then $\mathcal{I}_K^G = \mathcal{I}_E$.

Theorem 1.4.42. (Kummer) Let $E = \mathbb{Q}(\zeta_p)$ where $p > 2$ is prime. If $p \mid h^+$, then $p \mid h^-$.

Proposition 1.4.43. Suppose K/F is a \mathbb{Z}_p-extension, where F is a number field. Let \mathfrak{q} be a prime of F that does not divide $p\mathcal{O}_F$. Then K/F is unramified at \mathfrak{q}.

Proposition 1.4.44. Let K/F be a \mathbb{Z}_p-extension, where F is a number field. Some prime of \mathcal{O}_F ramifies in K/F and moreover there is some level m such that every prime that ramifies in $K/K^{(m)}$ is totally ramified.
Chapter 2

Local Class Field Theory

2.1 Preliminaries on Local Fields

Here we let K be a field that is complete with respect to a normalized discrete valuation $v_K : K^\times \to \mathbb{Z}$. We could just assume that K is an extension field of \mathbb{Q}_p (of possibly infinite degree). Let

- $\mathcal{O}_K = \{ x \in K : v_K(x) \geq 0 \}$
- $\mathcal{U}_K = \{ x \in K : v_K(x) = 0 \}$
- π_K, a uniformizer in K, so $v_K(\pi_K) = 1$
- $\mathcal{P}_K = \{ x \in K : v_K(x) > 0 \} = \pi_K \mathcal{O}_K$
- $\mathcal{U}_K^{\text{un}} = \{ x \in \mathcal{U}_K : x \equiv 1 \ \text{mod} \ \mathcal{P}_K^{\text{un}} \}$
- $\mathbb{F}_K = \mathcal{O}_K / \mathcal{P}_K$, the residue field of K

We also denote the following

- K_{ur} a maximal unramified extension of K
- \widehat{K}_{ur} the completeion of K_{ur}
- $\widehat{\mathbb{F}}_{ur}$ the residue field of \widehat{K}_{ur}
- Ω a complete, algebraically closed extension of \widehat{K}_{ur}

Consider the case when K is local. Let $K_{(t)}$ denote the unramified extension of K of degree t, i.e., the splitting field over K of the polynomial $X^{q^t} - X$, where $q = \#\mathbb{F}_K$. Clearly $K_{(t)} \subset K_{(n)}$ if and only if $t \mid n$. The field K_{ur} is simply the union $\bigcup K_{(t)}$.

19
Proposition 2.1.1. Let K be a local field. The field \mathbb{F}_{ur} is an algebraic closure of \mathbb{F}_K. Moreover, there is a natural isomorphism $\text{Gal}(K_{ur}/K) \cong \text{Gal}(\mathbb{F}_{K_{ur}}/\mathbb{F}_K)$.

Definition 2.1.2. The Frobenius automorphism is just the lift to $\text{Gal}(L/K)$ of the map $x \mapsto x^q$ from $\text{Gal}(\mathbb{F}_L/\mathbb{F}_K)$, where q is the cardinality of the residue field of K. But the map $x \mapsto x^q$ also can be viewed as belonging to $\text{Gal}(\mathbb{F}_{K_{ur}}/\mathbb{F}_K)$; its life to $\text{Gal}(K_{ur}/K)$ will be called the Frobenius automorphism of K, denoted ϕ.

Proposition 2.1.3. Let K be a local field and suppose L/K is Galois with $K_{ur} \subset L$. Let $\sigma \in \text{Gal}(L/K)$ be such that $\sigma|_{K_{ur}} = \phi$. Let F be the fixed field of σ in L. Then $FK_{ur} = L$ and $F \cap K_{ur} = K$, so $\text{Gal}(L/F) \cong \text{Gal}(K_{ur}/K)$. Note this implies F/K is totally ramified.

Theorem 2.1.4. (Decomposition Theorem) Let L/K be a finite Galois extension, and suppose \mathbb{F}_K is a finite field. There is a totally ramified extension L'/K such that $L'_{ur} = L'K_{ur} = LK_{ur} = L_{ur}$. Moreover, if $\text{Gal}(L/K)_{\text{ram}}$ is central in $\text{Gal}(L/K)$, then we can take L'/K to be abelian.

2.2 A Fundamental Exact Sequence

Lemma 2.2.1. Let G be a finite abelian group and let $g \in G$. Then G contains a subgroup H such that G/H is cyclic and the order of gH in G/H is the same as the order of g in G.

Throughout this section, we suppose K is complete with respect to a discrete valuation and \mathbb{F}_K is algebraically closed. For the extension L/K, we put

$$V(L/K) = \langle \frac{\sigma(u)}{u} : u \in U_L, \sigma \in \text{Gal}(L/K) \rangle,$$

a subgroup of U_L.

Proposition 2.2.2. Let L/K be a finite abelian extension. The group homomorphism

$$i : \text{Gal}(L/K) \to U_L/V(L/K) \text{ given by } i(\sigma) = \frac{\sigma(\pi_L)}{\pi_L}V(L/K)$$

is injective.

Theorem 2.2.3. Suppose \mathbb{F}_K is algebraically closed, and L/K is a finite cyclic extension. Let $N : U_L/V(L/K) \to U_K$ be the map that sends the coset $uV(L/K)$
to \(N_{L/K}(u) \). Since elements of \(\mathcal{V}(L/K) \) have norm 1, this is a well-defined homomorphism. The sequence

\[
1 \to \text{Gal}(L/K) \xrightarrow{i} \mathcal{U}_L/\mathcal{V}(L/K) \xrightarrow{N} \mathcal{U}_K \to 1
\]

is exact.

Lemma 2.2.4. Let \(L/K \) be a finite Galois extension, and let \(K \subset E \subset L \), where \(E/K \) is Galois. Then \(N_{L/E} \mathcal{V}(L/K) = \mathcal{V}(E/K) \).

Lemma 2.2.5. Let \(L/K \) be a finite abelian extension, let \(E \) be an intermediate field such that \(L/E \) is cyclic. Then

\[
1 \to \text{Gal}(L/E) \xrightarrow{i} \mathcal{U}_L/\mathcal{V}(L/K) \xrightarrow{\tilde{N}} \mathcal{U}_E/\mathcal{V}(E/K) \to 1
\]

is exact, where the map \(\tilde{N} \) is induced by \(N_{L/E} \).

Theorem 2.2.6. If \(\mathbb{F}_K \) is algebraically closed and \(L/K \) is a finite abelian extension, then

\[
1 \to \text{Gal}(L/K) \xrightarrow{i} \mathcal{U}_L/\mathcal{V}(L/K) \xrightarrow{N} \mathcal{U}_K \to 1
\]

is an exact sequence.

2.3 Local Units Modulo Norms

Throughout this section, we suppose \(K \) is a local field (so \(\mathbb{F}_K \) is finite). Let \(L/K \) be a finite abelian extension that is totally ramified. Then the extension \(\tilde{L}_{ur}/\tilde{K}_{ur} \) is abelian and totally ramified with \(\text{Gal}(\tilde{L}_{ur}/\tilde{K}_{ur}) \cong \text{Gal}(L/K) \). Recall we let \(\mathbb{F}_ur \) denote the residue field of \(\tilde{K}_{ur} \) (and of \(K_{ur} \)), so that \(\mathbb{F}_ur \) is an algebraic closure of \(\mathbb{F}_K \). We use \(\phi \) to denote the Frobenius automorphism in \(\text{Gal}(\mathbb{F}_ur/\mathbb{F}_K) \); also we continue to use \(\phi \) to denote its lifts in \(\text{Gal}(K_{ur}/K) \) and \(\text{Gal}(L_{ur}/L) \), and their extensions to \(\tilde{K}_{ur} \) and \(\tilde{L}_{ur} \). We have a homomorphism

\[
\phi - 1 : \mathcal{U}_{\tilde{K}_{ur}} \to \mathcal{U}_{\tilde{K}_{ur}}
\]

given by \(u \mapsto \phi(u)u^{-1} \).

Lemma 2.3.1. We have the following:

1. \(\phi - 1 : \mathcal{U}_{K_{ur}} \to \mathcal{U}_{K_{ur}} \) is surjective, as is \(\phi - 1 : \mathcal{O}_{K_{ur}} \to \mathcal{O}_{K_{ur}} \).
2. \(\phi - 1 : \mathcal{V}(L_{ur}/\tilde{K}_{ur}) \to \mathcal{V}(L_{ur}/\tilde{K}_{ur}) \) is surjective,
3. \(\ker(\phi - 1 : \mathcal{U}_{\tilde{K}_{ur}} \to \mathcal{U}_{\tilde{K}_{ur}}) = \mathcal{U}_K \).
Proposition 2.3.2. Define a map $\theta_{L/K} : \mathcal{U}_K \to \text{Gal}(L/K)$ for abelian extensions L/K that are totally ramified. Then

1) $\theta_{L/K}$ is surjective
2) $\ker \theta_{L/K} = N_{L/K} \mathcal{U}_L$.

Theorem 2.3.3. For any finite totally ramified abelian extension L/K, there is an isomorphism

$\tilde{\theta}_{L/K} : \mathcal{U}_K/N_{L/K} \mathcal{U}_L \to \text{Gal}(L/K)$.

Theorem 2.3.4. If L/K is a finite abelian extension, then there is a canonical isomorphism $\tilde{\theta}_{L/K} : \mathcal{U}_K/N_{L/K} \mathcal{U}_L \to \text{Gal}(L/K)_{\text{ram}}$.

2.4 Lubin-Tate Extensions

Definition 2.4.1. For two formal power series F, G we write $F \equiv G \mod \deg d$ to mean that F and G coincide in terms of degree less than d.

Definition 2.4.2. A one-dimensional formal group law over R is a power series, $F \in R[[X,Y]]$ such that

1) $F(X,0) = X$, $F(0,Y) = Y$, and
2) $F(X,F(Y,Z)) = F(F(X,Y),Z)$.

If we also have $F(X,Y) = F(Y,X)$, then F is said to be a commutative formal group law.

Definition 2.4.3. Suppose F and G are one-dimensional formal group laws over R. A power series $\theta \in R[[X]]$ that satisfies

1) $\theta(X) \equiv 0 \mod \deg 1$, and
2) $\theta(F(X,Y)) = G(\theta(X),\theta(Y))$

is called an R-homomorphism from F to G. Denote the set of all R-homomorphisms from F to G by $\text{Hom}_R(F,G)$.

Let K be a local field. For each uniformizer π of K, let

$\mathcal{F}_\pi = \{f(X) \in \mathcal{O}_K[[X]] : f(X) \equiv \pi X \mod \deg 2 \text{ and } f(X) \equiv X^q \mod \mathcal{P}_K\}$

Theorem 2.4.4. (Lubin, Tate) Let π be a uniformizer in a local field K, and let F_K have order q. Suppose $f, g \in \mathcal{F}_\pi$ and let $\ell(X_1, \ldots, X_m) = a_1X_1 + \cdots +$
Lemma 2.4.11. Suppose \(a_{m}X_{m} \) be a linear form (with \(a_{i} \in \mathcal{O}_{K} \)). Then there is a unique power series \(F \in \mathcal{O}_{K}[[X_{1}, \ldots, X_{m}]] \) such that

\[
F(X_{1}, \ldots, X_{m}) \equiv f(X_{1}, \ldots, X_{m}) \mod \deg 2
\]

\[
f(F(X_{1}, \ldots, X_{m})) = F(g(X_{1}), \ldots, g(X_{m})).
\]

Definition 2.4.5. For \(f \in \mathcal{F}_{\pi} \), let \(F_{f}(X, Y) \) be the unique power series in \(\mathcal{O}_{K}[[X, Y]] \) that satisfies

\[
F_{f}(X, Y) \equiv X + Y \mod \deg 2,
\]

\[
f(F_{f}(X, Y)) = f(f(X), f(Y)).
\]

The formal group laws \(F_{f} \) for \(f \in \mathcal{F}_{\pi_{K}} \) are called the **Lubin-Tate formal group laws** for \(\pi_{K} \).

Lemma 2.4.6. (Lubin, Tate) Suppose \(K \) is a local field, with residue field \(\mathbb{F}_{K} \) of order \(q \). Let \(\pi \) be a uniformizer in \(K \), and let \(f(X), g(X) \in \mathcal{F}_{\pi} \). Then for any \(a \in \mathcal{O}_{K} \) there is a unique power series \([a]_{f, g}(X) \in \mathcal{O}_{K}[[X]] \) such that

\[
f([a]_{f, g}(X)) = [a]_{f, g}(g(X))
\]

\[
[a]_{f, g}(X) \equiv aX \mod X^{2}
\]

Corollary 2.4.7. (Lubin, Tate) Let \(K \) be a local field and let \(\pi \) be a uniformizer in \(K \). Suppose \(f(X), g(X), h(X) \in \mathcal{F}_{\pi} \) and \(a, b \in \mathcal{O}_{K} \). As is customary, we put \([a]_{f} = [a]_{f, f} \).

i) \([\pi]_{f}(X) = f(X)\)

ii) \([a]_{f, g}([b]_{g, h}(X)) = [ab]_{f, h}(X) \) for any \(a, b \in \mathcal{O}_{K} \)

iii) \([1]_{f, g}([1]_{g, f}(X)) = X\)

iv) \([a]_{f, g}(F_{g}(X, Y)) = F_{f}([a]_{f, g}(X), [a]_{f, g}(Y))\)

v) \([a + b]_{f, g}(X) = F_{f}([a]_{f, g}(X), [b]_{f, g}(X))\).

Lemma 2.4.8. Let \(k \) be any field, and let \(g(X) = X^{n} + a_{n-1}X^{n-1} + \cdots + a_{0} \in k[X] \) where either \(\text{char } k = 0 \) or \(n \) is prime to \(\text{char } k \). Then we may find a positive integer \(r \) and a polynomial \(\tilde{g}(X) \in k[X] \) of degree less than \(r \), such that the polynomial \(h(X) = X^{r}g(X) + \tilde{g}(X) \) has only simple zeros.

Proposition 2.4.9. Let \(K \) be a local field and fix a polynomial \(f(X) \in \mathcal{F}_{\pi_{K}} \). For \(m \in \mathbb{Z}_{+} \), let \(L_{m} \) be the field associated to \(f(X) \). Then

\[
N_{L_{m}/K}\mathcal{U}_{L_{m}} \subset \mathcal{U}_{K}^{m}.
\]

Lemma 2.4.10. Let \(f(X) \in \mathcal{O}_{K}[[X]] \), and suppose \(L/K \) is a finite extension. If there is some \(\lambda \in L \) with \(v_{L}(\lambda) > 0 \) and \(f(\lambda) = 0 \), then there is a power series \(h(X) \in \mathcal{O}_{K}[[X]] \) with \(f(X) = (X - \lambda)h(X) \).

Lemma 2.4.11. Suppose \(u, u' \in \mathcal{U}_{K} \) and let \(f(X) \in \mathcal{F}_{\pi_{K}} \) be a polynomial of degree \(q \). If \([u]_{f}(\lambda_{m}) = [u']_{f}(\lambda_{m}) \) then \(u\mathcal{U}_{K}^{m} = u'\mathcal{U}_{K}^{m} \).
CHAPTER 2. LOCAL CLASS FIELD THEORY

Theorem 2.4.12. Let K be a local field and let L_m be as above, for some polynomial $f(X) \in \mathcal{F}_{\pi_K}$ of degree q. Then L_m/K is Galois, and $\text{Gal}(L_m/K) \cong \mathcal{U}_K/\mathcal{U}_m^K$.

Corollary 2.4.13. The extensions L_m/K depend only on the choice of uniformizer π_K; they do not depend on the choice of polynomial $f(X) \in \mathcal{F}_{\pi_K}$.

Definition 2.4.14. The field L_m is called the mth Lubin-Tate extension of K associated to the uniformizer π_K.

Corollary 2.4.15. Let L_m be the mth Lubin-Tate extension of a local field K. Then $N_{L_m/K} \mathcal{U}_{L_m} = \mathcal{U}_m^K$.

Theorem 2.4.16. Let K be a local field. There are isomorphisms $\text{Gal}(K_{ab}/K)_{\text{ram}} \cong \mathcal{U}_K$ and $\text{Gal}(K_{ab}/K) \cong \mathcal{U}_K \times \hat{\mathbb{Z}}$.

Corollary 2.4.17. Let K be a local field with uniformizer π_K. Put $L_{\pi_K} = \bigcup L_m$ where the L_m are the Lubin-Tate extensions of K associated to the uniformizer π_K. Then $K_{ab} = L_{\pi_K} K_{ur}$.

2.5 The Local Artin Map

Lemma 2.5.1. If L/K is a finite abelian extension, then $[K^\times : N_{L/K}L^\times] = [L : K]$.

Let $\rho_{LK(t)/K} : K^\times \to \text{Gal}(LK(t)/K)$ be the unique homomorphism that satisfies

$$\rho_{LK(t)/K}(u) = \theta_{L/K}(u^{-1}) \text{ for } u \in \mathcal{U}_K$$

$$\rho_{LK(t)/K}(\pi_K) = \phi \text{ Frobenius in } \text{Gal}(LK(t)/L).$$

Lemma 2.5.2. Let $K(t)/K$ be a finite unramified extension of K of degree t. Let L/K and E/K be finite totally ramified abelian extension of K such that $LK(t) = ED(t)$. Consider the composition

$$K^\times \xrightarrow{\rho_{LK(t)/K}} \text{Gal}(LK(t)/K) \xrightarrow{\text{nat}} \text{Gal}(E/K).$$

The kernel of this composition is $N_{E/K}E^\times$.

24
Definition 2.5.3. Choose a uniformizer π_K of K, and use the union L_{π_K} of the Lubin-Tate extensions of K, recalling that $K_{ab} = L_{\pi_K} K_{ur}$, and we may identify $\text{Gal}(K_{ab}/K_{ur}) = \text{Gal}(L_{\pi_K}/K)$. Define $\rho_K : K^\times \to \text{Gal}(K_{ab}/K)$ to be the unique homomorphism that satisfies

$$\rho_K(u) = \theta_{K_{ab}/K}(u^{-1}) \in \text{Gal}(L_{\pi_K}/K) \text{ for } u \in U_K$$

$$\rho_K(\pi_K) = \phi \text{ Frobenius in } \text{Gal}(K_{ab}/L_{\pi_K}).$$

Since $\pi_K \in N_{L_m/K} L_m^\times$ for all the Lubin-Tate extensions L_m/K, it follows that ρ_K agrees with $\rho_{L_m,K_{(i)}/K}$. ρ_K is called the local Artin map or the local norm residue map.

Theorem 2.5.4. Let L/K be a finite abelian extension. Consider the composition

$$K^\times \overset{\rho_K}{\to} \text{Gal}(K_{ab}/K) \overset{\text{rest}}{\to} \text{Gal}(L/K).$$

The kernel of this composition is $N_{L/K} L^\times$.

Corollary 2.5.5. The open subgroups of finite index in K^\times are precisely the subgroups of the form $N_{L/K} L^\times$, for L/K finite abelian. Indeed, any open subgroup of finite index in K^\times is the kernel of the composition

$$K^\times \overset{\rho_K}{\to} \text{Gal}(K_{ab}/K) \overset{\text{nat}}{\to} \text{Gal}(L/K)$$

for some finite abelian extension L/K.

Lemma 2.5.6. Let π and π' be uniformizers in a local field K, say with $\pi' = u \pi$, where $u \in U_K$. Let $q = \# F_K$ and suppose $f(X), g(X)$ are polynomials of degree q such that $f(X) \in F_\pi$ and $g(X) \in F_{\pi'}$. We use ϕ to denote the Frobenius automorphism in $\text{Gal}(K_{ur}/K)$ and also its extension to \hat{K}_{ur}.

Theorem 2.5.7. Define the homomorphism $\gamma_\pi : K^\times \to \text{Gal}(L_\pi K_{ur}/K)$, with

$$\gamma_\pi(u) = \sigma_u^{-1} \in \text{Gal}(L_\pi K_{ur}/K_{ur}) \cong \text{Gal}(L_\pi/K),$$

$$\gamma_\pi(\pi) = \phi \text{ Frobenius in } \text{Gal}(L_\pi K_{ur}/L_\pi).$$

γ_π does not depend on the choice of uniformizer π. Moreover, γ_π is the local Artin map, i.e., $\gamma_\pi = \rho_K$.

25